Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.813
Filtrar
1.
Parasite Immunol ; 46(2): e13023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372452

RESUMO

Toxoplasmosis is one of the most dangerous zoonotic diseases, causing serious economic losses worldwide due to abortion and reproductive problems. Vaccination is the best way to prevent disease; thus, it is imperative to develop a candidate vaccine for toxoplasmosis. BAG1 and ROP8 have the potential to become vaccine candidates. In this study, rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 were used to evaluate the immune effect of vaccines in each group by detecting the humoral and cellular immune response levels of BABL/c mice after immunization and the ability to resist acute and chronic infection with Toxoplasma gondii (T. gondii). We divided the mice into vaccine groups with different proteins, and the mice were immunized on days 0, 14, and 28. The protective effects of different proteins against T. gondii were analysed by measuring the cytokines, serum antibodies, splenocyte proliferation assay results, survival time, and number and diameter of brain cysts of mice after infection. The vaccine groups exhibited substantially higher IgG, IgG1, and IgG2a levels and effectively stimulated lymphocyte proliferation. The levels of IFN-γ and IL-2 in the vaccine group were significantly increased. The survival time of the mice in each vaccine group was prolonged and the diameter of the cysts in the vaccine group was smaller; rTgBAG1-rTgROP8 had a better protection. Our study showed that the rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 recombinant protein vaccines are partial but effective approaches against acute or chronic T. gondii infection. They are potential candidates for a toxoplasmosis vaccine.


Assuntos
Vacinas Protozoárias , Toxoplasmose , Animais , Camundongos , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Imunidade Celular , Imunização , Imunoglobulina G , Camundongos Endogâmicos BALB C , Proteínas de Protozoários , Vacinas Protozoárias/imunologia , Proteínas Recombinantes/genética , Toxoplasma , Toxoplasmose/prevenção & controle , Vacinação
2.
Front Immunol ; 13: 809711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185896

RESUMO

Cheap, easy-to-produce oral vaccines are needed for control of coccidiosis in chickens to reduce the impact of this disease on welfare and economic performance. Saccharomyces cerevisiae yeast expressing three Eimeria tenella antigens were developed and delivered as heat-killed, freeze-dried whole yeast oral vaccines to chickens in four separate studies. After vaccination, E. tenella replication was reduced following low dose challenge (250 oocysts) in Hy-Line Brown layer chickens (p<0.01). Similarly, caecal lesion score was reduced in Hy-Line Brown layer chickens vaccinated using a mixture of S. cerevisiae expressing EtAMA1, EtIMP1 and EtMIC3 following pathogenic-level challenge (4,000 E. tenella oocysts; p<0.01). Mean body weight gain post-challenge with 15,000 E. tenella oocysts was significantly increased in vaccinated Cobb500 broiler chickens compared to mock-vaccinated controls (p<0.01). Thus, inactivated recombinant yeast vaccines offer cost-effective and scalable opportunities for control of coccidiosis, with relevance to broiler production and chickens reared in low-and middle-income countries (LMICs).


Assuntos
Coccidiose/veterinária , Eimeria tenella/imunologia , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Animais , Galinhas/imunologia , Galinhas/parasitologia , Coccidiose/prevenção & controle , Eimeria tenella/crescimento & desenvolvimento , Feminino , Masculino , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/genética , Vacinas Protozoárias/genética , Saccharomyces cerevisiae/imunologia , Vacinação/métodos , Vacinação/veterinária , Vacinas de Subunidades/imunologia
3.
Infect Genet Evol ; 96: 105150, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34801755

RESUMO

Toxoplasma gondii, a worldwide opportunistic parasite, causes serious diseases in both humans and fetuses with defective immune systems. The development of an effective vaccine is urgently required to prevent and control the spread of toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii which is one of the most damaging zoonotic diseases of global importance. Plasmid DNA vaccination is a promising procedure for vaccine development and following the previous studies, pcROP13 + pcGRA14 cocktail DNA vaccine was evaluated for Th17 immune responses. Four groups of BALB/c mice were immunized intramuscularly three times at 2-week intervals. Subsequently, the production of anti- T. gondii antibodies and serum levels of cytokines IL-17, and IL-22 were evaluated against the RH strain of T. gondii. In addition, both the reactive oxygen species (ROS) and parasite load were assessed using ELISA and Q-PCR, respectively. The results of this study showed that high levels of IgG were found in mice immunized with cocktail DNA vaccine (p < 0.05). The cytokines level of Th17, IL-17, and IL-22, increased remarkably in the immunized mice (p < 0.05). Also, significant induction (p < 0.05) was observed in ROS. In addition, immunization with pcROP13 + GRA14 resulted in a considerable decrease in parasite load compared to the control groups (p < 0.05). Based on the results, the pcROP13 + GRA14 cocktail DNA vaccine induced Th17 related cytokines and decreased the parasite load in spleen and brain tissues. Hence, pcGRA14 + pcROP13 cocktails are suitable candidates for DNA-based vaccines and due to the development of protective immune responses against T. gondii infection, future studies may yield promising results using these antigens in vaccine design.


Assuntos
Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasmose/prevenção & controle , Desenvolvimento de Vacinas , Animais , Antígenos de Protozoários/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C
4.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638530

RESUMO

Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Vesículas Extracelulares/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Vacinas Bacterianas/biossíntese , Feminino , Lipopolissacarídeos/imunologia , Camundongos , Neisseria meningitidis/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Vacinas Protozoárias/biossíntese , Salmonella typhimurium/imunologia , Shigella sonnei/imunologia
5.
Front Cell Infect Microbiol ; 11: 735191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660343

RESUMO

Pathogens require physical contact with the mucosal surface of the host organism to initiate infection and as such, vaccines eliciting both mucosal and systemic immune responses would be promising. Studies involving the use of recombinant baculoviruses (rBVs) as mucosal vaccines are severely lacking despite their inherently safe nature, especially against pathogens of global importance such as Toxoplasma gondii. Here, we generated rBVs displaying T. gondii rhoptry protein 4 (ROP4) and evaluated their protective efficacy in BALB/c mice following immunization via intranasal (IN) and oral routes. IN immunization with the ROP4-expressing rBVs elicited higher levels of parasite-specific IgA antibody responses compared to oral immunization. Upon challenge infection with a lethal dose of T. gondii ME49, IN immunization elicited significantly higher parasite-specific antibody responses in the mucosal tissues such as intestines, feces, vaginal samples, and brain than oral immunization. Marked increases in IgG and IgA antibody-secreting cell (ASC) responses were observed from intranasally immunized mice. IN immunization elicited significantly enhanced induction of CD4+, CD8+ T cells, and germinal center B (GC B) cell responses from secondary lymphoid organs while limiting the production of the inflammatory cytokines IFN-γ and IL-6 in the brain, all of which contributed to protecting mice against T. gondii lethal challenge infection. Our findings suggest that IN delivery of ROP4 rBVs induced better mucosal and systemic immunity against the lethal T. gondii challenge infection compared to oral immunization.


Assuntos
Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias , Toxoplasma , Administração através da Mucosa , Animais , Anticorpos Antiprotozoários , Baculoviridae/genética , Linfócitos T CD8-Positivos , Citocinas , Feminino , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Vacinas Protozoárias/imunologia , Toxoplasma/genética
6.
Sci Rep ; 11(1): 17626, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475453

RESUMO

Antigen identification is an important step in the vaccine development process. Computational approaches including deep learning systems can play an important role in the identification of vaccine targets using genomic and proteomic information. Here, we present a new computational system to discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study, we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as secretory/surface-exposed nature, low transmembrane helix (< 2), essentiality, virulence, antigenic, and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic MHC class I, MHC class II and B cell epitopes were extracted from top-ranking vaccine targets. The designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for its physicochemical properties using different tools, including docking analysis. Immunological simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity of the vaccine.


Assuntos
Biologia Computacional/métodos , Vacinas/imunologia , Vacinologia/métodos , Vacinas Bacterianas/imunologia , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Cólera/imunologia , Cólera/prevenção & controle , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Vacinas Protozoárias/imunologia , Trypanosoma cruzi/imunologia , Vibrio cholerae/imunologia
7.
Sci Rep ; 11(1): 18295, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521964

RESUMO

Drug resistance against coccidiosis has posed a significant threat to chicken welfare and productivity worldwide, putting daunting pressure on the poultry industry to reduce the use of chemoprophylactic drugs and live vaccines in poultry to treat intestinal diseases. Chicken coccidiosis, caused by an apicomplexan parasite of Eimeria spp., is a significant challenge worldwide. Due to the experience of economic loss in production and prevention of the disease, development of cost-effective vaccines or drugs that can stimulate defence against multiple Eimeria species is imperative to control coccidiosis. This study explored Eimeria immune mapped protein-1 (IMP-1) to develop a multiepitope-based vaccine against coccidiosis by identifying antigenic T-cell and B-cell epitope candidates through immunoinformatic techniques. This resulted in the design of 7 CD8+, 21 CD4+ T-cell epitopes and 6 B-cell epitopes, connected using AAY, GPGPG and KK linkers to form a vaccine construct. A Cholera Toxin B (CTB) adjuvant was attached to the N-terminal of the multiepitope construct to improve the immunogenicity of the vaccine. The designed vaccine was assessed for immunogenicity (8.59968), allergenicity and physiochemical parameters, which revealed the construct molecular weight of 73.25 kDa, theoretical pI of 8.23 and instability index of 33.40. Molecular docking simulation of vaccine with TLR-5 with binding affinity of - 151.893 kcal/mol revealed good structural interaction and stability of protein structure of vaccine construct. The designed vaccine predicts the induction of immunity and boosted host's immune system through production of antibodies and cytokines, vital in hindering surface entry of parasites into host. This is a very important step in vaccine development though further experimental study is still required to validate these results.


Assuntos
Coccidiose/veterinária , Eimeria/imunologia , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Galinhas/imunologia , Galinhas/parasitologia , Coccidiose/imunologia , Coccidiose/prevenção & controle , Sequência Conservada/genética , Eimeria/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/genética
8.
J Immunol ; 207(8): 1965-1977, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507950

RESUMO

Parasite-specific CD8 T cell responses play a key role in mediating immunity against Theileria parva in cattle (Bos taurus), and there is evidence that efficient induction of these responses requires CD4 T cell responses. However, information on the antigenic specificity of the CD4 T cell response is lacking. The current study used a high-throughput system for Ag identification using CD4 T cells from immune animals to screen a library of ∼40,000 synthetic peptides representing 499 T. parva gene products. Use of CD4 T cells from 12 immune cattle, representing 12 MHC class II types, identified 26 Ags. Unlike CD8 T cell responses, which are focused on a few dominant Ags, multiple Ags were recognized by CD4 T cell responses of individual animals. The Ags had diverse properties, but included proteins encoded by two multimember gene families: five haloacid dehalogenases and five subtelomere-encoded variable secreted proteins. Most Ags had predicted signal peptides and/or were encoded by abundantly transcribed genes, but neither parameter on their own was reliable for predicting antigenicity. Mapping of the epitopes confirmed presentation by DR or DQ class II alleles and comparison of available T. parva genome sequences demonstrated that they included both conserved and polymorphic epitopes. Immunization of animals with vaccine vectors expressing two of the Ags demonstrated induction of CD4 T cell responses capable of recognizing parasitized cells. The results of this study provide detailed insight into the CD4 T cell responses induced by T. parva and identify Ags suitable for use in vaccine development.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas Protozoárias/imunologia , Theileria parva/fisiologia , Theileriose/imunologia , Animais , Apresentação de Antígeno , Antígenos de Protozoários/imunologia , Bovinos , Células Cultivadas , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Ensaios de Triagem em Larga Escala , Antígenos de Histocompatibilidade Classe II , Ativação Linfocitária , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T
9.
ACS Appl Mater Interfaces ; 13(34): 40415-40428, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470103

RESUMO

Toxoplasma gondii (T. gondii) infection causes severe zoonotic toxoplasmosis, which threatens the safety of almost one-third of the human population globally. However, there is no effective protective vaccine against human toxoplasmosis. This necessitates anti-T. gondii vaccine development, which is a main priority of public health. In this study, we optimized the adjuvant system 04 (AS04), a vaccine adjuvant constituted by 3-O-desacyl-4'-monophosphoryl lipid A (a TLR4 agonist) and aluminum salts, by packing it within natural extracts of ß-glucan particles (GPs) from Saccharomyces cerevisiae to form a GP-AS04 hybrid adjuvant system. Through a simple mixing procedure, we loaded GP-AS04 particles with the total extract (TE) of T. gondii lysate, forming a novel anti-T. gondii vaccine GP-AS04-TE. Results indicated that the hybrid adjuvant can efficiently and stably load antigens, mediate antigen delivery, facilitate the dendritic uptake of antigens, boost dendritic cell maturation and stimulation, and increase the secretion of pro-inflammatory cytokines. In the mouse inoculation model, GP-AS04-TE significantly stimulated the function of dendritic cells, induced a very strong TE-specific humoral and cellular immune response, and finally showed a strong and effective protection against toxoplasma chronic and acute infections. This work proves the potential of GP-AS04 for exploitation as a vaccine against a range of pathogens.


Assuntos
Adjuvantes de Vacinas/uso terapêutico , Hidróxido de Alumínio/uso terapêutico , Lipídeo A/análogos & derivados , Nanocompostos/uso terapêutico , Vacinas Protozoárias/uso terapêutico , Toxoplasma/imunologia , Toxoplasmose/prevenção & controle , Adjuvantes de Vacinas/química , Adjuvantes de Vacinas/toxicidade , Hidróxido de Alumínio/química , Hidróxido de Alumínio/imunologia , Hidróxido de Alumínio/toxicidade , Animais , Células Dendríticas/efeitos dos fármacos , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/uso terapêutico , Polissacarídeos Fúngicos/toxicidade , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Lipídeo A/química , Lipídeo A/imunologia , Lipídeo A/uso terapêutico , Lipídeo A/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Nanocompostos/química , Nanocompostos/toxicidade , Fagócitos/efeitos dos fármacos , Vacinas Protozoárias/química , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/toxicidade , Saccharomyces cerevisiae/química , Extratos de Tecidos/química , Extratos de Tecidos/imunologia , Extratos de Tecidos/uso terapêutico , Extratos de Tecidos/toxicidade , Toxoplasma/química , Toxoplasmose/imunologia , beta-Glucanas/química , beta-Glucanas/uso terapêutico , beta-Glucanas/toxicidade
10.
Front Immunol ; 12: 674484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305904

RESUMO

East Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, remains one of the most important livestock diseases in sub-Saharan Africa with more than 1 million cattle dying from infection every year. Disease prevention relies on the so-called "Infection and Treatment Method" (ITM), which is costly, complex, laborious, difficult to standardise on a commercial scale and results in a parasite strain-specific, MHC class I-restricted cytotoxic T cell response. We therefore attempted to develop a safe, affordable, stable, orally applicable and potent subunit vaccine for ECF using five different T. parva schizont antigens (Tp1, Tp2, Tp9, Tp10 and N36) and Saccharomyces cerevisiae as an expression platform. Full-length Tp2 and Tp9 as well as fragments of Tp1 were successfully expressed on the surface of S. cerevisiae. In vitro analyses highlighted that recombinant yeast expressing Tp2 can elicit IFNγ responses using PBMCs from ITM-immunized calves, while Tp2 and Tp9 induced IFNγ responses from enriched bovine CD8+ T cells. A subsequent in vivo study showed that oral administration of heat-inactivated, freeze-dried yeast stably expressing Tp2 increased total murine serum IgG over time, but more importantly, induced Tp2-specific serum IgG antibodies in individual mice compared to the control group. While these results will require subsequent experiments to verify induction of protection in neonatal calves, our data indicates that oral application of yeast expressing Theileria antigens could provide an affordable and easy vaccination platform for sub-Saharan Africa. Evaluation of antigen-specific cellular immune responses, especially cytotoxic CD8+ T cell immunity in cattle will further contribute to the development of a yeast-based vaccine for ECF.


Assuntos
Imunização/métodos , Vacinas Protozoárias/imunologia , Theileria parva/imunologia , Theileriose/prevenção & controle , Animais , Linfócitos T CD8-Positivos/imunologia , Bovinos/imunologia , Imunização/veterinária , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Protozoárias/uso terapêutico , Linfócitos T Citotóxicos/imunologia , Carrapatos , Leveduras/imunologia
11.
Front Immunol ; 12: 683157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248966

RESUMO

Amebiasis is a neglected tropical disease caused by Entamoeba histolytica. Although the disease burden varies geographically, amebiasis is estimated to account for some 55,000 deaths and millions of infections globally per year. Children and travelers are among the groups with the greatest risk of infection. There are currently no licensed vaccines for prevention of amebiasis, although key immune correlates for protection have been proposed from observational studies in humans. We previously described the development of a liposomal adjuvant formulation containing two synthetic TLR ligands (GLA and 3M-052) that enhanced antigen-specific fecal IgA, serum IgG2a, a mixed IFNγ and IL-17A cytokine profile from splenocytes, and protective efficacy following intranasal administration with the LecA antigen. By applying a statistical design of experiments (DOE) and desirability function approach, we now describe the optimization of the dose of each vaccine formulation component (LecA, GLA, 3M-052, and liposome) as well as the excipient composition (acyl chain length and saturation; PEGylated lipid:phospholipid ratio; and presence of antioxidant, tonicity, or viscosity agents) to maximize desired immunogenicity characteristics while maintaining physicochemical stability. This DOE/desirability index approach led to the identification of a lead candidate composition that demonstrated immune response durability and protective efficacy in the mouse model, as well as an assessment of the impact of each active vaccine formulation component on protection. Thus, we demonstrate that both GLA and 3M-052 are required for statistically significant protective efficacy. We also show that immunogenicity and efficacy results differ in female vs male mice, and the differences appear to be at least partly associated with adjuvant formulation composition.


Assuntos
Antígenos de Protozoários/imunologia , Entamoeba histolytica/imunologia , Entamebíase/imunologia , Entamebíase/prevenção & controle , Vacinas Protozoárias/imunologia , Adjuvantes Imunológicos/química , Administração Intranasal , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Fenômenos Químicos , Citocinas/metabolismo , Composição de Medicamentos , Entamebíase/parasitologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Lipossomos , Camundongos , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/química , Vacinação
12.
PLoS Negl Trop Dis ; 15(7): e0009613, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34314435

RESUMO

Chagas disease, caused by the parasite Trypanosoma cruzi, is considered endemic in more than 20 countries but lacks both an approved vaccine and limited treatment for its chronic stage. Chronic infection is most harmful to human health because of long-term parasitic infection of the heart. Here we show that immunization with a virus-like particle vaccine displaying a high density of the immunogenic α-Gal trisaccharide (Qß-αGal) induced several beneficial effects concerning acute and chronic T. cruzi infection in α1,3-galactosyltransferase knockout mice. Approximately 60% of these animals were protected from initial infection with high parasite loads. Vaccinated animals also produced high anti-αGal IgG antibody titers, improved IFN-γ and IL-12 cytokine production, and controlled parasitemia in the acute phase at 8 days post-infection (dpi) for the Y strain and 22 dpi for the Colombian strain. In the chronic stage of infection (36 and 190 dpi, respectively), all of the vaccinated group survived, showing significantly decreased heart inflammation and clearance of amastigote nests from the heart tissue.


Assuntos
Cardiomiopatia Chagásica/prevenção & controle , Coração/parasitologia , Vacinas Protozoárias/imunologia , Trypanosoma cruzi , Animais , Anticorpos Antiprotozoários/sangue , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Imunoglobulina G/sangue , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
13.
Front Immunol ; 12: 621803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149685

RESUMO

Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.


Assuntos
Infecções Bacterianas/imunologia , Doenças das Aves/imunologia , Ceco/microbiologia , Galinhas/imunologia , Coccídios/fisiologia , Coccidiose/imunologia , Eimeria/fisiologia , Microbioma Gastrointestinal/imunologia , Vacinas Protozoárias/imunologia , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bacitracina , Mirtilos Azuis (Planta) , Imunidade Humoral , Metabolismo dos Lipídeos , Vacinação , Vaccinium macrocarpon
14.
Vet Immunol Immunopathol ; 238: 110285, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34146834

RESUMO

Abortions caused by Neospora caninum are a serious problem in cattle production and require effective immunoprophylaxis. The objective of this work was to assess the humoral immune response to four recombinant (r) N. caninum antigens in cattle after immunisation and challenge. MIC1 and MIC3 proteins from the micronemes, SRS2 from the surface of tachyzoites, and GRA7 from the dense granules were expressed as truncated recombinant proteins in Escherichia coli. Cationic liposomes (Lip) and CpG oligodeoxynucleotides (CpG-ODNs) were used as adjuvant. Steers were assigned to three groups of six steers each and were inoculated twice subcutaneously, 21 days apart. The rP + Lip + CpG-ODN group received the truncated recombinant proteins rMIC1, rMIC3, rSRS2 and rGRA7 formulated with the adjuvant; the Lip + CpG-ODN group received the adjuvant alone; and the PBS group received sterile phosphate-buffered saline. All steers were subcutaneously challenged with the NC-1 strain of N. caninum 35 days after the second dose of immunisation. Steers from the rP + Lip + CpG-ODN group developed specific IgG, IgG1 and IgG2 against the four recombinant proteins after immunisation. After challenge, IgG against rMIC1 and rMIC3 was detected in rP + Lip + CpG-ODN group and against rSRS2 and rGRA7 in all groups. IgG1 and IgG2 against the four recombinant proteins remained high after challenge in the rP + Lip + CpG-ODN group. Indirect ELISA detected anti-N. caninum antibodies after challenge in all groups, with the highest level of antibodies being detected in the rP + Lip + CpG-ODN group. The recombinant vaccine formulated with rMIC1, rMIC3, rSRS2 and rGRA7 using Lip + CpG-ODN as adjuvant was immunogenic in cattle and the humoral immune response after challenge was enhanced in vaccinated cattle.


Assuntos
Coccidiose , Neospora , Proteínas de Protozoários , Vacinas Protozoárias , Proteínas Recombinantes , Animais , Bovinos , Masculino , Anticorpos Antiprotozoários , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Coccidiose/prevenção & controle , Coccidiose/veterinária , Imunidade Humoral , Lipossomos , Oligodesoxirribonucleotídeos/administração & dosagem , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Proteínas Recombinantes/imunologia , Vacinação/veterinária
15.
Parasitol Res ; 120(8): 2855-2861, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34185155

RESUMO

This study aimed to compare the immune response against Toxoplasma gondii (T. gondii) in BALB/c mice induced by excreted/secreted (E/S) antigens and mannose-modified nanoliposome of E/S antigens. Here, E/S antigens and mannose-modified nanoliposome of E/S antigens were firstly prepared, and then BALB/c female inbred mice were separately immunized. In the next step, anti-E/S antigen antibodies and the relative expression levels of IL-10 and IL-12 mRNA were detected by ELISA and real-time PCR, respectively. After immunization, mice were intraperitoneally challenged with 102 tachyzoites of T. gondii, and the survival rate was recorded. The ELISA analysis showed significant differences between the levels of anti-E/S antigen antibodies in the mice immunized by E/S antigens and those immunized by mannose-modified nanoliposome of E/S antigens at days 7, 10, 20, 25, and 30 (P < 0.05). Real-time PCR analysis showed that the relative expression of IL-10 was significantly decreased during 20 days. Yet, the relative expression of IL-12 was significantly increased during 20 days (P < 0.05). In T. gondii challenge test, significant differences were found between the survival rates of mice immunized by E/S antigens and mice immunized by mannose-modified nanoliposome with E/S antigens. This project evidenced that mannose-modified nanoliposome of E/S antigens induced a more powerful immune response against T. gondii in BALB/c mice when compared with excreted/secreted antigens alone.


Assuntos
Vacinas Protozoárias , Toxoplasma , Toxoplasmose Animal , Animais , Anticorpos Antiprotozoários , Antígenos de Protozoários/imunologia , Feminino , Imunidade Humoral , Interleucina-10 , Interleucina-12 , Lipossomos , Manose , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Proteínas de Protozoários , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia
16.
Front Immunol ; 12: 663041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113343

RESUMO

Despite the enormous morbidity attributed to schistosomiasis, there is still no vaccine to combat the disease for the hundreds of millions of infected people. The anthelmintic drug, praziquantel, is the mainstay treatment option, although its molecular mechanism of action remains poorly defined. Praziquantel treatment damages the outermost surface of the parasite, the tegument, liberating surface antigens from dying worms that invoke a robust immune response which in some subjects results in immunologic resistance to reinfection. Herein we term this phenomenon Drug-Induced Vaccination (DIV). To identify the antigenic targets of DIV antibodies in urogenital schistosomiasis, we constructed a recombinant proteome array consisting of approximately 1,000 proteins informed by various secretome datasets including validated proteomes and bioinformatic predictions. Arrays were screened with sera from human subjects treated with praziquantel and shown 18 months later to be either reinfected (chronically infected subjects, CI) or resistant to reinfection (DIV). IgG responses to numerous antigens were significantly elevated in DIV compared to CI subjects, and indeed IgG responses to some antigens were completely undetectable in CI subjects but robustly recognized by DIV subjects. One antigen in particular, a cystatin cysteine protease inhibitor stood out as a unique target of DIV IgG, so recombinant cystatin was produced, and its vaccine efficacy assessed in a heterologous Schistosoma mansoni mouse challenge model. While there was no significant impact of vaccination with adjuvanted cystatin on adult worm numbers, highly significant reductions in liver egg burdens (45-55%, P<0.0001) and intestinal egg burdens (50-54%, P<0.0003) were achieved in mice vaccinated with cystatin in two independent trials. This study has revealed numerous antigens that are targets of DIV antibodies in urogenital schistosomiasis and offer promise as subunit vaccine targets for a drug-linked vaccination approach to controlling schistosomiasis.


Assuntos
Antígenos de Helmintos/imunologia , Mapeamento de Epitopos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Praziquantel/farmacologia , Schistosoma haematobium/imunologia , Esquistossomose Urinária/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Mapeamento de Epitopos/métodos , Proteínas de Helminto/imunologia , Humanos , Imunização , Imunoglobulina G/imunologia , Camundongos , Carga Parasitária , Proteômica/métodos , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/imunologia , Esquistossomose Urinária/parasitologia , Esquistossomose Urinária/prevenção & controle , Vacinação
17.
Open Biol ; 11(6): 200384, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34129780

RESUMO

Toxoplasma gondii is a ubiquitous pathogen infecting one-third of the global population. A significant fraction of toxoplasmosis cases is caused by reactivation of existing chronic infections. The encysted bradyzoites during chronic infection accumulate high levels of amylopectin that is barely present in fast-replicating tachyzoites. However, the physiological significance of amylopectin is not fully understood. Here, we identified a starch synthase (SS) that is required for amylopectin synthesis in T. gondii. Genetic ablation of SS abolished amylopectin production, reduced tachyzoite proliferation, and impaired the recrudescence of bradyzoites to tachyzoites. Disruption of the parasite Ca2+-dependent protein kinase 2 (CDPK2) was previously shown to cause massive amylopectin accumulation and bradyzoite death. Therefore, the Δcdpk2 mutant is thought to be a vaccine candidate. Notably, deleting SS in a Δcdpk2 mutant completely abolished starch accrual and restored cyst formation as well as virulence in mice. Together these results suggest that regulated amylopectin production is critical for the optimal growth, development and virulence of Toxoplasma. Not least, our data underscore a potential drawback of the Δcdpk2 mutant as a vaccine candidate as it may regain full virulence by mutating amylopectin synthesis genes like SS.


Assuntos
Amilopectina/biossíntese , Vacinas Protozoárias , Toxoplasma/imunologia , Toxoplasma/metabolismo , Toxoplasmose/imunologia , Desenvolvimento de Vacinas , Animais , Antígenos de Protozoários/imunologia , Linhagem Celular , Glucose/biossíntese , Humanos , Camundongos , Mutação , Filogenia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Sintase do Amido/genética , Sintase do Amido/metabolismo , Toxoplasma/classificação , Toxoplasma/patogenicidade , Toxoplasmose/prevenção & controle , Virulência
18.
Nature ; 595(7865): 96-100, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34040257

RESUMO

Trypanosomes are protozoan parasites that cause infectious diseases, including African trypanosomiasis (sleeping sickness) in humans and nagana in economically important livestock1,2. An effective vaccine against trypanosomes would be an important control tool, but the parasite has evolved sophisticated immunoprotective mechanisms-including antigenic variation3-that present an apparently insurmountable barrier to vaccination. Here we show, using a systematic genome-led vaccinology approach and a mouse model of Trypanosoma vivax infection4, that protective invariant subunit vaccine antigens can be identified. Vaccination with a single recombinant protein comprising the extracellular region of a conserved cell-surface protein that is localized to the flagellum membrane (which we term 'invariant flagellum antigen from T. vivax') induced long-lasting protection. Immunity was passively transferred with immune serum, and recombinant monoclonal antibodies to this protein could induce sterile protection and revealed several mechanisms of antibody-mediated immunity, including a major role for complement. Our discovery identifies a vaccine candidate for an important parasitic disease that has constrained socioeconomic development in countries in sub-Saharan Africa5, and provides evidence that highly protective vaccines against trypanosome infections can be achieved.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Trypanosoma vivax/imunologia , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/prevenção & controle , Animais , Antígenos de Protozoários/química , Proteínas do Sistema Complemento/imunologia , Sequência Conservada/imunologia , Modelos Animais de Doenças , Feminino , Flagelos/química , Flagelos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Protozoárias/química , Fatores de Tempo , Trypanosoma vivax/química , Trypanosoma vivax/citologia , Tripanossomíase Africana/parasitologia , Vacinas de Subunidades/química , Vacinas de Subunidades/imunologia
19.
PLoS Negl Trop Dis ; 15(5): e0009340, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983946

RESUMO

The current approaches to reduce the burden of chronic helminth infections in endemic areas are adequate sanitation and periodic administration of deworming drugs. Yet, resistance against some deworming drugs and reinfection can still rapidly occur even after treatment. A vaccine against helminths would be an effective solution at preventing reinfection. However, vaccines against helminth parasites have yet to be successfully developed. While T helper cells and innate lymphoid cells have been established as important components of the protective type 2 response, the roles of B cells and antibodies remain the most controversial. Here, we review the roles of B cells during intestinal helminth infection. We discuss the potential factors that contribute to the context-specific roles for B cells in protection against diverse intestinal helminth parasite species, using evidence from well-defined murine model systems. Understanding the precise roles of B cells during resistance and susceptibility to helminth infection may offer a new perspective of type 2 protective immunity.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Linfócitos B/imunologia , Helmintíase/imunologia , Helmintos/imunologia , Enteropatias Parasitárias/imunologia , Animais , Anti-Helmínticos/uso terapêutico , Centro Germinativo/imunologia , Helmintíase/tratamento farmacológico , Helmintíase/parasitologia , Helmintos/efeitos dos fármacos , Humanos , Enteropatias Parasitárias/tratamento farmacológico , Enteropatias Parasitárias/parasitologia , Camundongos , Vacinas Protozoárias/imunologia , Reinfecção/parasitologia , Reinfecção/prevenção & controle , Linfócitos T Auxiliares-Indutores/imunologia
20.
Trop Biomed ; 38(1): 8-13, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797517

RESUMO

Coccidiosis is the most important protozoan disease in broilers all over the world. Controlling of broilers coccidiosis via vaccination rather than chemicals is a new trend with promising results. Thus, the present work describes an evaluation of Eimeria tenella Lab-made vaccine of local Egyptian strain and its comparative efficacy with a commercial live vaccine "Fortegra®". Eighty broiler chickens one day old were used; they were divided in to 4 equal groups; 20 chicks each. Group 1 (G1) kept as control negative, G2 administrated orally with lab-made sporulated oocysts vaccine at 5 days old, the birds of G3 vaccinated orally with Fortegra® at day 6 of age, and G4 served as control positive. All birds were challenge by 50,000 sporulated oocysts of E. tenella at day 21. For testing the efficacy and comparison; OPG (oocyst per gram), serum Interleukin4 (IL4) levels, Immunoglobulin A (IgA) levels in both serum and ceca, cecal lesion score, as well as histopathological changes in ceca of tested groups were evaluated. The results demonstrated significantly elevated IL4 level in serum and IgA level in serum and cecum of G2 than G3. IgA in cecum significantly elevated in G2 than G3. OPG significantly decreased in both vaccinated groups (G2 and G3), and have lower lesion score than nonimmunized group. Cecal tissues of vaccinated groups had mild pathological changes. Conclusively, good immunization by the currently tested vaccine, against experimental E. tenella infection was observed.


Assuntos
Coccidiose/veterinária , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/imunologia , Animais , Ceco/imunologia , Galinhas , Coccidiose/prevenção & controle , Egito , Eimeria tenella , Imunoglobulina A , Interleucina-4 , Oocistos , Doenças das Aves Domésticas/parasitologia , Vacinas Atenuadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...